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Abstract. Ephemeral streams are highly dependent on rainfall and terrain characteristics and, therefore, very sensitive to
minor changes in these environments. Western Mediterranean area exhibits a highly irregular precipitation regime with a
great variety of rainfall events driving the flow generation on intermittent watercourses, and future climate change scenarios
depict a lower magnitude and higher intensity of precipitation in this area, potentially leading to severe changes in flows. We
explored the rainfall-runoff relationships in two semiarid watersheds in southern Spain (Algeciras and Upper Mula) to model
the different types of rainfall events required to generate new flow in both intermittent streams. We used a nonlinear
approach through Generalized Additive Models at event scale in terms of magnitude, duration, and intensity, contextualizing
resulting thresholds in a long-term perspective through the calculation of return periods. Results showed that the average
~1.2-day and <1.5 mm event was not enough to create new flows. At least a 4-day event ranging from 4 to 20 mm,
depending on the watershed was needed to ensure new flow at a high probability (95%). While these thresholds represented
low return periods (from 4 to 10 years), the great irregularity of annual precipitation and rainfall characteristics, makes
prediction highly uncertain. Almost a third part of the rainfall events resulted in similar or lower flow than previous day,
emphasizing the importance of lithological and terrain characteristics that lead to differences in flow generation between the
watersheds.

1 Introduction

Precipitation plays a paramount role on drainage of the watersheds, especially in those depending on rainfall for the
persistence of the flows, considered intermittent streams. These types of watercourses, occasionally dry, are already a large-
scale phenomenon (Acufia et al., 2005; Larned et al., 2010; Datry et al., 2014) and could be potentially increased under
climate change conditions (Nabih et al., 2021; Brunner et al., 2020; Skoulikidis et al., 2017; Brooks, 2009). Thus, intensity

and magnitude of rainfall events are a key part of hydrological models for simulation and prediction of floods in these
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watersheds (Gioia et al., 2008; Kirkby et al., 2005) and knowing the thresholds required to generate new flows helps to
tackle with natural hazards from a hydrological modelling perspective (Kampf et al., 2018).

Ephemeral streams are drainage networks remaining completely dry during a variable period of the year and, owing to
rainfall events of certain magnitude, they can discharge relatively high flows (Donglioni et al., 2015) that can persist for
some time. Western Mediterranean area is especially prone to accommodate watersheds with these types of streams because
of the high irregularity of precipitation, both in space and time (Tockner et al., 2009; Thibault et al., 2017). In ephemeral
streams, this irregularity turns into a great uncertainty in flow generation affecting not only the stream but also to other parts
of the system. For example, the fickleness of flows alters the actual ecological functioning of the watershed at variable scales
and, of course, affects the agricultural systems covering lowlands, that usually require infrastructures to retain water.
Understanding how these watersheds react to precipitation is fundamental for prediction and forecasting of droughts and
floods (Déll and Schmied, 2012; Arnone et al., 2020), but also for erosion potentiality depending on the type of lithology
under the soil and the type of vegetation or land cover at surface. Previous research in ephemeral watersheds on Western
Mediterranean (e.g., Camarasa and Tilford, 2002; Camarasa, 2016) showed that rainfall-runoff relationships drive
hydrological mechanisms and the dynamics of the rest of the system at basin scale, and that they can be modelled to forecast
flows based on the rainfall events of different magnitude.

In this work, we explore the rainfall-runoff relationships in two watersheds with ephemeral streams in southeastern Spain:
Algeciras (44.9 km?) and Mula (169.4 km?). Daily precipitation and flows from 17 and 24 years, respectively, were analysed
at event scale to model the influence of rainfall events in the generation of new runoff in both watersheds. Due to the great
irregularity of precipitation, we used a nonlinear approach through Generalized Additive Models, and we compared the

results in a wider temporal perspective through the calculation of return levels for several return periods.

2 Study site

The watersheds of Algeciras and Upper Mula are located within the semiarid climate characterizing the southeastern area of
the Iberian Peninsula (Figure 1). Annual precipitation, with a manifest equinoctial regime (maximums in March-April and
September-October) rarely exceeds 300 mm (Serrano-Notivoli et al., 2017), depicting the driest place in continental Europe.
Average temperatures range from 10 to 26 °C, however, temperatures above 30 °C are common during summertime and
absolute values higher than 40 °C are not an exception (Serrano-Notivoli et al., 2019). With more than 100 days above 25 °C,
the evapotranspiration rate is among the highest in Spain (Tomas-Burguera et al., 2020), leading to a negative water balance
in the whole region that persists all over the year. This water balance is sometimes aggravated by types of soil with high
rates of infiltration, hampering runoff during most of the year
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Figure 1: Location of the watersheds and precipitation gauges
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The Upper Mula stream is an intermittent tributary at headwaters of the Mula River, which directly flows into the Segura

River. Algeciras stream is an ephemeral watercourse draining into the Guadalentin River, the main tributary of the Segura

River. Both basins belong to the geomorphological Betic and Subbetic domain. Limestone and dolomites, sandstones,

siliceous marls, and detrital limestones predominate in their headwaters. However, their middle and lower parts are

lithologically quite contrasted: marls and alluvial sediments are abundant in the Algeciras watershed, promoting a badlands

landscape, while sandstone, conglomerates and detrital limestones predominate in the Upper Mula basin (Figure 2a and 2b).

The land cover in the Algeciras is mainly composed of forest (28%), bare soil (25%) and scrubland (24%), while forest

(39%), agricultural row crop (25%) and shrubland (20%) are dominant in the Upper Mula catchment (Figure 2c and 2d).

Lowlands of the watersheds are occupied by two reservoirs: Cierva-Mula (1929) and Algeciras (1995), both with a defensive

function against floods and for irrigation control.
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Figure 2: Rock types and land use in the Upper Mula (a, ¢) and Algeciras watersheds (b, d).

2 Data and methods
2.1 Data

The data series of flows were obtained from the gauging reports supplied by the Center for Public Works Studies and
Experimentation (CEDEX) for the Segura basin. We used the data series of the daily average flow (m?/s) corresponding to
periods 2003-2020 (Algeciras) and 1996-2020 (Upper Mula). Although Algeciras and Mula watersheds are ungauged and
there are not direct measures of water discharge, the daily flow series were calculated from the difference between the

volume of water stored in the reservoirs and the output of the previous day (Eq. 1).

E=R—-R)+S @

where E is the inflow into the reservoir (m®); R, the reserve of the current day (m®); R, the reserve of the previous day (m°);
and S, the output flow of the previous day (m®). While resulting daily series are not a direct measure of the streamflow, they
provide the only representation of daily flow variations.

In order to provide single daily precipitation (P) series for each watershed, we created two regional series based on the
information of meteorological stations (13 for Algeciras and 14 for Mula) from the Spanish meteorological agency (Aemet),

the Agroclimatic Information System (SIAR) of the Spanish Ministry of Agrifood and Fisheries, and the Segura
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Hydrographic Confederation (CHS) (Figure 1). These sources provided daily sums of precipitation and their hourly
maximums. Both series (sums and maximums) were averaged for Algeciras and Mula for all days in which daily flows data
series were available (2003-2020 in Algeciras and 1996-2020 in Mula). The original data series of the meteorological
stations provided a reliable representation of the real magnitude of precipitation events. Although the use of a spatial
interpolation scheme had been useful to look for precipitation differences in a different situation (e.g., larger spatial domain,
longer temporal period), the small extent of the study area (approx. 50x50 km) and the watersheds, along with the sizeable
number of available observations, made the mean daily precipitation a reliable representation of the precipitation regime at
event scale. In addition, the availability of single flow data series for each watershed constrained the analysis to a
comparison with unique precipitation series. The complete process resulted in 2 series of daily precipitation and 2 series of
hourly maximums in the same period of flows data series. Due to the reduced study area, most of the stations have a similar
behaviour regarding precipitation occurrence, however, we considered as dry days those averaging a value lower than the
minimum registered by the precipitation gauges (0.1 mm). The series of hourly maximums were built by averaging, for each
day in all stations, the maximum precipitation cumulated in one hour. Despite the potential difference between stations, this
measure represents the average intensity of daily precipitation. Lastly, we used the SPREAD dataset (Serrano-Notivoli et al.,
2017), a daily gridded precipitation dataset covering the whole Spanish territory at a 5x5 km spatial resolution, to analyse
long-term trends of annual precipitation since 1950 to 2020 of the two watersheds. This analysis helped to study the low-
frequency climatic signal of a broader spatial domain, by contextualizing the study period of each watershed since mid-20™
century.

2.2 Statistical analyses at event scale

Instead of relating daily precipitation (P) with daily flows (Q), we opted to work at event scale due to consecutive wet days
(P > 0) can have a different and more persistent impact on flow generation than single wet days. Rainfall events (RE) were
detected from daily data series for the whole period, in both watersheds, by grouping consecutive wet days. We then
calculated 4 variables for each event: duration (number of days); magnitude (sum of precipitation of all days); maximum
(sum of hourly maximums of all days); and flow contribution (4Q, difference between the cumulated flow during the RE and
flow of the day before the RE).

We performed, using all events, a simple linear correlation analysis between the four variables for an overview of the general
linkage between each other. However, ephemeral streams involve highly nonlinear relationships between rainfall and runoff
(Ye et al., 1997) and, for this reason, we used Generalized Additive Models (GAMS) to detect further responses of the flows
to rainfall at event scale. GAMs allowed for assessing simultaneous smooth relationships that can be linear or nonlinear as
demonstrated in previous research (e.g., van Ogtrop et al., 2011). As the objective was to find out what type of event was
necessary to generate flow in both basins, we used as dependent variable the 4Q codified as a binomial variable (Qbin,
40>0: 1; 40<=0: 0) and duration, magnitude and maximum were treated as smooth predictor variables, specified using

shrinkage smoothers (thin plate regression spline). GAMs were used with the logit link and the three variables were included

5
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in the model to predict Qbin, first individually, and then in combination with each other. All the models were compared, and
the basis dimension of each smooth term was checked and increased when necessary. The final model was selected, for each
watershed, based on the Akaike Information Criterion (AIC). Concurvity (the analogue of multi-collinearity in GAMSs) was
tested in the final model (Table S1).

To contextualize the different thresholds of the RE for different probabilities of generating flow in both watersheds, we
estimated the return levels of the RE for up to 400 years using the generalized extreme value (GEV) distribution for extreme
events using the block maxima approach. We used four different methods (Maximum Likelihood Estimation (MLE);
Generalized MLE (GMLE); Bayesian estimation (BPE); and L-moments estimation (LMOM)) to establish proper and wide

confidence levels in the estimate of maximum rainfall per RE.

3 Results
3.1 Characteristics of flows and precipitation

Average daily flows (Q) in Algeciras and Mula were relatively low in both watersheds (0.29 and 0.15 m3/s, respectively) and
these values were distant from the median of each month (Figure 3), denoting their great irregularity. However, the specific
flow, that considers the size of the watershed, is 6.5 I/s/lkm? in Algeciras and 0.9 I/s’/km? in Upper Mula (Table 1). Both
watersheds had a similar precipitation regime, with a clear minimum in summer, especially in July, and maximums in spring
and autumn (March and September are the rainiest months, respectively). However, their flows did not respond in the same
way to precipitation. While Mula had a more direct response to incident rainfall, Algeciras showed a different behaviour
with their maximums at the end of summer and the beginning of autumn, associated to very high precipitation events. Also,
the middle and lower parts of the Algeciras watershed are mainly covered with marls and alluvial sediments, creating an arid
landscape consisting of a predominance of badlands and bare soil, where the rates of saturated hydraulic conductivity and
hydraulic conductivity of the main channel are very low. Additionally, Algeciras show a higher curve number and slope than
Upper Mula and shorter concentration and lag times (Table 1). Thus, terrain characteristics play a key role on rainfall-runoff
relationships, but also to the amount of Q per month. For instance, Mula have an average 30% more days per month with

Q>0 than Algeciras, reaching almost 50% in summertime.
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Figure 3: Frequency of daily flows (Q) by month indicating low and high quantiles. Boxes show 25th to 75" percentiles with
median as a bold horizontal line. Vertical lines reach 95" percentile (outliers are not shown). Bottom numbers show the mean

number of days with Q>0. Bars from top indicate mean monthly precipitation (P).

Table 1: Geometric data of Algeciras and Mula watersheds.

Area Longest | Stream | Watershed | Curve | Concentration | Lag time | Specific
stream | slope slope Number| time—Kirpich flow
Algeciras | 44.9 km? | 25.1 km | 4.2% 35.6% 86.4 3.75h 2.25h 6.5 I/s/km?
Mula 169.4 km?| 45.5km | 1.7% 22.2% 81.6 9.38h 5.63 h 0.9 I/s/km?

3.1.1 Rainfall events (RE) over time

The long-term analysis of annual precipitation showed different behaviours of the watersheds in the first two decades of 21
century (Figure 4) than in previous periods, coinciding with the period of study (when available flow data series). Algeciras
showed a higher frequency of drier years until the end of 1980s’ decade. Then, this pattern changed and 13 of the first 20
years of 21% century were wetter than the average, concurring a positive anomaly of the number of precipitation days. Linear
trend indicated a non-significant increase of 7.2 mm/decade of annual precipitation and a significant increase of 7.1
days/decade of number of wet days per year. In summary, Algeciras experienced an increase of precipitation events with an
uncertain increase of their magnitude. However, precipitation amounts in 2000-2020 period were lower than the three

previous decades.
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The irregularity of annual precipitation in Mula provided an also irregular depiction of its anomalies through time. While
1950-1970 period showed a rotation of wet and dry years, the decade of 1970 was the wettest and, since then, most of the
years were below the average precipitation. The anomaly of wet days showed a regular behaviour from 1960 to 2000, when
they increased until 2020. Precipitation amounts showed a negative and non-significant trend of 8.6 mm/decade and a

positive significant trend of number of wet days of 7.8 days/decade.
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Figure 4: Annual precipitation anomalies (bars) and annual anomaly of the number of wet days (P>0) (lines). 1950-2020 was used
as base period. Dashed lines indicate the period of data used for the analysis, coinciding with flows data availability.

When analysing the study periods at event scale (Figure 5), both watersheds showed most of the highest magnitudes of
precipitation in 2019 and 2020. While Algeciras showed a more regular response of flow contribution (4Q) to RE throughout
the study period, Mula experienced high 4Q in high magnitude events until 2000. Then, the response was less direct, with
similar (or higher) magnitude events and lower AQ than in the previous period. The duration of RE was varied in both
watersheds, and not always long event resulted in a high magnitude of precipitation and a high 4Q. In fact, the frequency of

high-magnitude events was higher from 2016 in Algeciras and Mula, but it was not accompanied by longer durations.
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A non-negligible proportion of RE produced a zero (14% in Algeciras and 3% in Mula) or negative (22% and 23%) 40,
meaning that the flow contributed resulted in a similar or lower value than the previous day of the event, respectively. These
RE, that were very similar in both watersheds, were short and small in terms of amount of rainfall. With a mean magnitude
between 0.5 and 1.5 mm and a mean duration from 1.2 to 1.3 days, the generation of new flow is difficult. The reason of why
these RE did not produced any flow contribution are related to the flow and precipitation regimes of the watersheds. For
instance, a large proportion of non-contributing RE were from June to August (Table 1), the months with lowest
precipitation, the lowest number of days with Q>0 (Figure 2), and the highest evapotranspiration (Tomas-Burguera et al.,
2020). Algeciras showed 10 months with proportions higher than 30%, a large difference compared to Mula (4 months), and
this is also explained by the higher intermittency of Algeciras stream. Also, the geomorphological characteristics of the
watersheds play a fundamental role on the 4Q: small RE in combination with unsealed and fragile soils favour the
infiltration (limestone lithologies prevail in Mula) and, especially in summer, evaporation, which necessarily leads to the

absence of new flows.
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Figure 5: Rainfall events (RE) in Algeciras (upper row) and Mula (lower row) showing the magnitude of the RE (blue bars), the
sum of hourly maximums (blue dots), the duration of the RE (narrow black bars over magnitudes) and the flow contributed by the
190 RE (thick continuous black lines).

Table 2: Monthly percentage of non-contributing RE (rainfall events producing zero or negative 4Q).

J F M A M J J A S O N D
Algeciras | 38.3 | 37.0 | 328 | 26.8 | 369 | 46.3 | 58.6 | 440 | 355 | 38.7 | 24.6 | 344
Mula 29.7 | 239 | 250 | 224 | 27.1 | 338 | 40.0 | 338 | 224 | 30.1 | 179 | 26.3

10
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3.2 Linear rainfall-runoff relationships

The linear correlation between the parameters of the RE and their corresponding 40 showed the general agreement between
precipitation and flow contribution. As expected, the parameters derived from the RE, duration, magnitude and hourly
maximums were highly positively correlated (Figure 6). An increase in the duration of the events usually led to higher
magnitudes of cumulated precipitation (Pearson 0.68 and 0.66 in Algeciras and Mula, respectively), but was the relationship
between magnitudes and cumulated hourly maximums the most direct with Pearson correlations of 0.98. These positive
relationships between the parameters, which are almost identical in both watersheds, showed that most of the events are
torrential (hourly maximums represent a higher proportion of the magnitudes) and of short duration (most of them occur
between 1 and 5 days). However, the relationship between the RE parameters and 4Q was very different between
watersheds. Both showed positive correlations, but Algeciras revealed higher values, from 0.53 to 0.68, with a more direct
response to the duration of RE and a slightly lower, and very similar, to the magnitude and maximums. In a lesser intensity,
Mula showed a similar overall pattern but with lower Pearson values (from 0.44 to 0.49). These results indicated that the
flow reaction to the RE was different between both watersheds in terms of the intensity of the relationship and that the linear

association is not enough to derive conclusions about it.

11
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Figure 6: Values of precipitation variables and flow contribution (4Q) of all events in Algeciras (bottom left side) and Mula (top
right side). Magnitude and maximum variables are in logarithmic scale. Pearson correlations are shown in red (all correlations are
significant at a<0.01)

3.3 Nonlinear rainfall-runoff relationships

In order to assess the nonlinear relationships between the 4Q and precipitation to extract the required parameters to generate
new flow by a RE, we modelled Qbin (40 as a binomial variable where 1 represents new generation of flow by the RE)
through a GAM approach. With the aim of evaluating the model accuracy with the selection of the best combination of
variables for each watershed, we compared different models using from one to all variables through the estimate errors AIC
(Akaike Information Criterion), logLik (log-likelihood), deviance (Residual deviance), and UBRE (Un-Biased Risk
Estimator).

Results (Table 3) showed that the model with duration and magnitude (M04) of RE got the lowest AIC in Algeciras. Despite
the rest of the estimate errors were not the lowest, M04 was the best combination in which all predictors were significant.
Mula watershed showed a similar behaviour but in this case the combination of duration and the cumulated hourly

maximums (MO05) got the best values with all their predictors significant. Duration was revealed as the key variable for both

12
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watersheds and the total amount of precipitation was more important in Algeciras than in Mula, where the intensity of the

RE (maximums) played a fundamental role on the flow generation.

Table 3: Accuracy assessment of the models for Algeciras (regular text) and Upper Mula (italic text). Goodness-of-fit measures:
AIC (Akaike information criterion), logLiK (log-likelihood), deviance (Residual deviance), UBRE (Un-Biased Risk Estimator) and
number of significant predictors. Bold text indicates the values of the selected model.

Model Variables AlC logLik deviance UBRE Srlergerg;‘
MOL Duration 715.955 | -354.058 | 708.117 | -0.00562 11
818.246 | -404.761 | 809.521 | -0.16929 11

. 738.640 | -364.67 | 729.341 | 0.02589 11

M0z2 Magnitude 939.895 | -467.102 | 934.203 | -0.04579 11
M3 Maximum 755445 | -373.294 | 746589 | 0.04923 11
944.966 | -467.762 | 935524 | -0.04064 11

. . 687.151 | -336.282 | 672.564 | -0.04562 22

M04 Duration-+Magnitude 811.434 | -399.792 | 799.584 | -0.17621 202
) . 694739 | -340.1 680.2 | -0.03508 22

MO5 Bl 810.325 | -398.818 | 797.636 | -0.17734 202
) . 688.426 | -363.667 | 727.334 | 0.02761 12

Mo6 Magnitude+Maximum | o/y'a3c | 464357 | 928713 | -0.04535 12
M7 Duration+ 688.426 | -335.622 | 671.244 | -0.04385 213
Magnitude+Maximum 812.278 | -398.779 | 797.559 | -0.17535 1/3

To evaluate the hit rate of the models, we used a random sample of 75% of the RE in each watershed to set up the models.
Then, predictions were computed for the remaining 25% and classified as probabilities from 0 to 1 as P<0.5: 0 and P>=0.5:
1 to be compared with the observations. Contingency table (Table 4) showed a general success rate (positive and neagtive) of
75.97% in Algeciras and 77.77% in Mula. True positives were 76.3 and 77.9% for Algeciras and Mula, respectively,
representing the correctly predicted RE with flow generation. False negatives (wrongly predicted Qbin) were 24.5 and 22.6%
of the cases. True negatives, indicating the correctly predicted non-contributing RE were 75.5 and 77.4% and false positives
(wrongly predicted contributing RE) were 23.7 and 22.1%.

While success rates are relatively high in both watersheds, results suggest other variables driving flow generation in RE
different than precipitation. Again, topographical and soil characteristics probably play an important role that is difficult to

integrate in these types of models.

Table 4: Contingency table of observed (Obs) and predicted (Pred) Qbin for Algeciras (regular text) and Mula (italic

text) with number of cases and percentage (in brackets) of true and false positives and negatives.

Obs =0 Obs=1
- 197 (75.5%) | 64 (24.5%)
Pred =0 | 505 (77.4%) | 60 (22.6%)
bred—1 | 109(23.7%) | 350 (76.3%)
- 159 (22.1%) | 561 (77.9%)
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245
Diagnostic plots of the partial effects (Figure 7) showed the probability of flow generation by a RE as long as the rest of the
partial effects remain in their average values. For instance, Algeciras showed that an event of 5 days duration guarantees the
flow contribution at a 95% probability (Figure 7a), but the 2-day RE already sum a probability of 50%. On the other hand, in
a RE of average duration (1.9 days), the magnitude required to reach 95% probability of flow contribution is 20.7 mm
250 (heavy rainfall), but the 50% probability is reached (Figure 7b) with 0.1 mm, meaning any precipitation record. By
comparison, Mula requires a 4-day RE to ensure new flow generation with a 95% probability. However, considering an
average duration event (2.1 days), the cumulated hourly maximums needed to fulfil with that probability is 3.8 (not very
intense precipitation), being reduced to 0.1 for a 50% probability.
Overall, these results indicate that, despite the new flow generation similarly reacts to RE in Algeciras and Mula, in both
255  watersheds the duration of the event is a critical factor. However, the total amount of precipitation is more important in

Algeciras than Mula, where cumulated hourly maximums, ultimately, the intensity of the RE has a more direct relationship.
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Figure 7: Predicted probabilities of partial effects of individual smooths for Algeciras (a, b) and Mula (c, d). Shadowed areas show
the 95% confidence intervals. Magnitudes and maximums are in logarithmic scale.
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3.4 Return periods of RE

We calculated the return levels of magnitude of the RE in Algeciras and of cumulated hourly maximums in Mula for return
periods from 1 to 400 years (Figure 8). Based on the fitted models, the most probable situation in which flow could be
generated in Algeciras required a magnitude of 20.7, which is approximately a 10-year return period. While not-being a very
usual magnitude in the watershed, it does not represent a rare value, meaning that flow generation in Algeciras is relatively
easy. A 4-year return period was obtained for the 3.8 mm required in Upper Mula to ensure the flow generation at 95%
probability. However, the great variability of this model increased the probabilities until 98.8% with a maximum of 44.6
mm, which represents a return period from 100 to more than 400 years. This large difference reveals the extreme irregularity

of flows in Mula and the high uncertainty in prediction based only on the RE.
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Figure 8: Return levels (RL) of magnitude of the events in Algeciras (top) and cumulated hourly maximums in Mula (bottom).
Solid lines show the RL estimated for different return periods with four different methods: MLE (Maximum Likelihood), LMOM
(L-moments), GMLE (Generalized MLE), and BPE (Bayesian). Dashed lines show the confidence intervals. Dots are the observed
magnitude and maximums of Algeciras and Mula, respectively.
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4 Discussion

Rainfall-runoff relationships at event scale in Upper Mula and Algeciras showed very different flow dynamics. Although
they are located near each other and precipitation regimes are relatively similar, the response to RE in terms of flow
generation had in common the responsibility of the duration of the event but the magnitude and the intensity played a
different role depending on the watershed. Differences in the lithological setting also explain these dissimilarities, agreeing
with previous works in similar environments (e.g., Huza et al., 2014; Merheb et al., 2016; Fortesa et al., 2020; Martinez-
Salvador and Conesa-Garcia, 2020). Constrained to the study area of our research, Martinez-Salvador et al. (2021) noted that
flows in Upper Mula source from lateral flow and from base flow storage, due to the permeable materials. Conversely, the
ephemeral stream in Algeciras is caused by the low values of the saturated hydraulic conductivity, the hydraulic conductivity
of the main channel, and the coefficient of roughness for overland flow, since a large part of the basin is dominated by
clayey materials, emphasizing the importance of lateral flow within the kinematic storage model. Thus, the way in which the
watersheds receive rainfall drives the flow generation, which always depends on the lithological and terrain configuration
(van Dijk, 2010), and changes in seasonal precipitation regimes or in RE duration, intensity, and magnitude, have a high
probability of changing the available flow.

In this regard, precipitation behaviour over the last decades in both watersheds was slightly different than the rest of the
Iberian Peninsula, where a decrease in the intensity prevailed (Serrano-Notivoli et al., 2018). However, the Mediterranean
Spanish coast, and especially the southeast area where Algeciras and Upper Mula are located, experimented a moderate
increase of high and very high precipitation events from mid-20™ century as well as a remarkable increase in the number of
wet days, agreeing with temporal patterns of both watersheds (Figure 3). While the precipitation totals decrease is an already
well-known trend (Gonzalez-Hidalgo et al., 2011; Homar et al., 2010; Ruiz-Sinoga et al., 2010), southeastern Spain tended
to a more intense precipitation (Mosmann et al., 2004) and more concentrated in time (De Luis et al., 2011; Serrano-Notivoli
et al., 2017). This scenario increases the chances of flow generation in ephemeral streams of Algeciras and Mula, but the
high irregularity and the negative trend of precipitation totals do not envisage a significant change on flow dynamics to less
intermittent streams.

Linear rainfall-runoff relationships were clearly uninformative due to the great irregularity of the RE and they did not
provide a valid approach to derive rainfall thresholds (T) for flow generation. Among the wide variety of methods that has
been used to model these thresholds in ephemeral or low-yield streams such as multivariate regressions, machine learning
approaches, etc. (e.g., Kaplan et al., 2020; Kampf et al., 2018; Shortridge et al., 2016), we used a GAM approach that allows
for avoiding stationarity assumptions in rainfall-runoff relationships (Tian et al., 2020). Using nonparametric smoothed
functions as a response curve for each variable has been demonstrated to reinforce the capture of non-linearity between
dependent variable (Qbin in our case) and covariates (RE parameters) in hydrological models (Rahman et al., 2018).

However, the accuracy of GAMs models is highly dependent on the data since the predictability is jeopardized when the
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smoothed variables contain outliers, which is precisely the case of the great variability of the RE parameters. The own nature
of GAMs, being accurate in the data range, can lead to overfitting and a loss of predictability in uneven data sets.

Low return periods were shown for events generating new flow, the analysis have some limitations to consider. First, we
only considered one variable (magnitude or maximum) for each basin when, in fact, they also depend on duration. This
means that the 10-year return period for Algeciras or the 2-year for Mula could be higher because the degree of reliability
provided by the model only considers the situation in which those variables occur in a RE of average duration (1.9 and 2.1
days, respectively). In this regard, further investigation is needed to set more accurate return periods because univariate
approaches might lead to inadequate estimation of the risk of a RE (Brunner et al., 2016). It should be also considered that
we only used the data of the RE in periods when flow was available (18 years for Algeciras and 25 years for Upper Mula)
because hourly maximums were not available out of the considered periods, meaning that the obtained return periods could
be lower if including long-term data series. Additionally, the approach that we used for the RE frequency analysis was the
bock maxima (BM) instead of the peaks-over-threshold (POT). One drawback of BM series is that they use only one event
per year, thus, the second highest, for instance, may be greater than several events of other years (Mkhandi et al., 2005),
leading to a loss of information. However, BM method is preferable when observations are not exactly independent and
identically distributed (Ferreira and de Haan, 2015).

Lastly, the nonlinear analysis of RE helped to understand the type of events required to generate new flow in both
watersheds. Prediction models in hydrology are a useful tool to improve water resources management in ephemeral streams
through a deeper knowledge of their rainfall-runoff dynamics, especially in vulnerable areas to the potential effects of

climate change and the accelerated degradation of their ecosystems.

5 Conclusions

We analysed rainfall-runoff relationships of two intermittent streams located in two medium-sized watersheds in southern
mainland Spain: Algeciras (2003-2020) and Upper Mula (1996-2020), with the aim of modelling the type of rainfall event
required to generate new flow. While a linear relationship was insufficient to derive robust conclusions about flow
production and rainfall, a nonlinear analysis using GAMs helped to understand that most of the new flow is driven by a
similar duration of the rainfall events (4-5 days to ensure a 95% probability) in both watersheds. However, the magnitude of
the event (cumulated precipitation) was a more significant predictor in Algeciras (20.7 mm) than Upper Mula, where
maximums (cumulated hourly maximums of each day) showed a higher significance (3.8 mm). These differences could be
due to the different orographic and lithological configuration. For example, Algeciras is smaller, with a higher average slope
than Upper Mula and less permeable materials prevailing across the watershed, in comparison to Upper Mula where
groundwater plays an important role on water management from rainfall events and producing a different response than

Algeciras.
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Results show that the precipitation regime is very irregular, and an average event of 1.2 days and less than 1.5 mm is clearly
insufficient to generate new flow. Almost a third part of the rainfall events are non-contributing for flow generation (flows
are similar or lower than previous day to the rainfall event). A long-term analysis through the calculation of return levels
showed that a 10-year return period for Algeciras and a 4-year for Upper Mula are enough to produce a contributing rainfall
event. These results agree with the long-term (70 years) precipitation patterns, that showed a highly variable annual water
availability alongside a significant increase of wet days, with different behaviour among watersheds. Within the study
period, Upper Mula showed 16 of 25 years below average precipitation, while Algeciras remained with the same frequency
as previous decades but a higher rate of wet days. A future drier scenario as considered in western Mediterranean climate

projections could lead to increase the return periods for the required magnitude of rainfall events to generate flows.
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Table S1: Concurvity between smooth functions of the predictors in the GAM analysing flow contribution by the RE
(Qbin) for Algeciras (regular text) and Mula (italic text). Zero means no concurvity among covariates, one means
complete concurvity.

ara s(duration) | s(magnitude)
P s(duration) | s(maximum)
worst 0 0.59 0.59
0 0.55 0.55
observed 0 0.39 0.57
0 0.33 0.53
estimate 0 0.38 0.22
0 0.37 0.22
Table S2: GAM summaries for both watersheds.
Algeciras
Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.998 1517 1.317 0.188
Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(duration) 2.908 3.106 40.64 <2e-16
s(magnitude) 3.385 4.025 28.33 | 1.17e-05
R-sg.(adj) = 0.312 Dev. expl. =28.7% | UBRE =-0.045623 | n=720
Upper Mula
Parametric coefficients:
Estimate Std. Error z value Pr(>|z])
(Intercept) 3.174 2.123 1.496 0.135
Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(duration) 3.302 3.599 108.55 <2e-16
s(maximum) 2.042 2.495 10.27 0.0108
R-sg.(adj) = 0.312 Dev. expl. =30.5% | UBRE =-0.17734 | n=985
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